
A COMPARATIVE OF GOAL-ORIENTED APPROACHES TO
MODELLING REQUIREMENTS FOR COLLABORATIVE

SYSTEMS

Miguel A. Teruel, Elena Navarro, Víctor López-Jaquero, Francisco Montero and Pascual González
LoUISE Research Group, Computing Systems Department, University of Castilla - La Mancha, Albacete, Spain

MiguelAngel.Teruel@uclm.es, Elena.Navarro@uclm.es, victor@dsi.uclm.es, fmontero@dsi.uclm.es,
pgonzalez@dsi.uclm.es

Keywords: Goal-Oriented, KAOS, NFR, i*, Collaborative Systems, CSCW, Awareness, Requirements Engineering,
Non-Functional Requirements, Quality.

Abstract: A collaborative system is a software allowing several users to work together and carry out collaboration,
communication and coordination tasks. To perform these tasks, the users have to be aware of other user’s
actions, usually by means of a set of awareness techniques. However, when these systems have to be
specified for development severe difficulties emerge to describe the requirements associated to these special
functionalities, usually considered non-functional requirements. Therefore, the selection and use of proper
requirements engineering techniques becomes a challenging and important decision. In this paper three
Goal-Oriented approaches, namely NFR framework, i* and KAOS, are evaluated in order to determine
which one is the most suitable to deal with this problem of requirements specification in collaborative
systems.

1 INTRODUCTION

A collaborative system (a.k.a. Computer Supported
Cooperative Work system, CSCW system) is a
software whose users can perform collaboration,
communication and coordination tasks. Unlike a
conventional single-user system, a CSCW system
has to be specified by using a special set of
requirements of non-functional nature. These
requirements usually result from the users' need of
being aware of the presence and activity of other
remote users with whom they perform the above
mentioned collaborative tasks, that is, the
Workspace Awareness (WA).

Workspace Awareness is the up-to-the-moment
understanding of another person’s interaction within
a shared workspace. Workspace awareness involves
knowledge about where others are working, what
they are doing now, and what they are going to do
next (Gutwin and Greenberg, 2002). Gutwin et al.
presented a conceptual framework to establish what
information makes up workspace awareness. This
information is obtained by answering the questions
“who, what and, where” (see Table 1). That is, when
we work with others users in a physical shared

space, we know who we are working with, what they
are doing, where they are working, when various
events happen, and how those events happen.

Table 1: Elements of Workspace Awareness.

Category Element Specific questions
Who Presence

Identity

Authorship

Is anyone in the workspace?
Who is participating? Who
is that?
Who is doing that?

What Action
Intention

Artefact

What are they doing?
What goal is that action part
of?
What object are they
working on?

Where Location
Gaze
View
Reach

Where are they working?
Where are they looking?
Where can they see?
Where can they reach?

In this context, a proper specification of the
system, identifying clearly the requirements of the
system-to-be, specially the awareness requirements,
is one of the first steps to overcome this problem.
The awareness requirements can be considered non-
functional requirements (NFR) or extra-functional

131

requirements (EFR), because they are usually
constraints regarding quality (e.g. functionality,
usability) (Hochmuller, 1999). However, the
specification of this kind of requirements is not a
trivial issue, because of the high number and
diversity of requirements they are related to, and
their high impact in terms of the final architecture of
the system. Therefore, the proper selection of the
requirement specification technique becomes a
challenging and important decision.

In a previous work (Teruel et al., 2011) it was
analyzed which technique, Goal-Oriented (GO), Use
Cases or Viewpoints is more appropriate to specify
the requirements of collaborative systems and it was
determined that GO provides more facilities for this
kind of systems. In this paper, we study the
applicability of three Goal Oriented (GO)
approaches (NFR Framework (Cysneiros and Yu,
2003), i* Framework (Castro, Kolp and Mylopoulos,
2001) and KAOS Methodology (van Lamsweerde,
2001)) for the specification of collaborative systems,
paying special attention to the awareness
requirements. In order to carry out this study, the
awareness requirements of a real system (Google
Docs (Google, 2011)) were specified. After
modelling the system, an empirical analysis was
conducted in order to compare these different
techniques goal-oriented techniques.

This paper is structured as follows. After this
introduction, in section 2, the selection of GO
techniques for modelling this kind of systems is
justified. In section 3, three GO approaches
applicable to awareness requirements for
collaborative systems are analysed. In section 4, an
example of a widely known collaborative system is
presented: Google Docs. In section 5, an empirical
evaluation of the previous techniques for modelling
awareness requirements in Google Docs is
presented. Finally, some conclusions and future
works round up this work.

2 RELATED WORKS

This paper is a follow-up of the work presented in
(Teruel et al., 2011), where we analysed different
Requirement Engineering techniques applied to
collaborative systems. The main result of this
evaluation was that the most appropriate technique
for this kind of systems is Goal Oriented (GO).
Nevertheless, in (Teruel et al., 2011) the evaluation
did not focus on a specific GO proposal.

In the context of Requirements Engineering, the
GO approach (van Lamsweerde, 2001) has proven

its usefulness for eliciting and defining
requirements. More traditional techniques, such as
Use Cases (Cockburn, 2000), only focus on
establishing the features (i.e. activities and entities)
that the system-to-be should support. Nevertheless,
GO proposals focus on why systems are being
constructed by providing the motivation and
rationale to justify the software requirements
specification. They are not only useful for analyzing
goals, but also for elaborating and refining them.

A GO model can be specified in a variety of
formats, by using a more or less formally defined
notation. These notations can be informal, semi-
informal or formal approaches. Informal approaches
generally use natural language to specify goals;
semi-formal use mostly box and arrow diagrams;
finally, in formal approaches goals are expressed as
logical assertions in some formal specification
language (Kavakli and Loucopoulos, 2004). No
matter its formality, a goal model is built as a
directed graph by means of a refinement of the
systems goals. This refinement lasts until goals have
enough granularity and detail so as to be assigned to
an agent (software or environment) so that they are
verifiable within the system-to-be. This refinement
process is performed by using AND/OR/XOR
refinement relationships.

There are a wide number of proposals ranging
from elicitation to validation activities in the RE
process (see (Kavakli and Loucopoulos, 2004) for an
exhaustive survey). However, some concepts are
common to all of them:

 Goal describes why a system is being
developed, or has been developed, from the
point of view of the business, organization or
the system itself. In order to specify it, both
functional goals, i.e., expected services of the
system, and softgoals related to the quality of
service, constraints on the design, etc should
be determined.

 Agent is any active component, either from the
system itself or from the environment, whose
cooperation is needed to define the
operationalization of a goal, that is, how the
goal is going to be provided by the system-to-
be. This operationalization of the goals is
exploited to maintain the traceability
throughout the process of software
development.

 Refinement Relationships: AND/OR/XOR
relationships allow the construction of the goal
model as a directed graph. These relationships
are applied by means of a refinement process
(from generic goals towards sub-goals) until

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

132

they have enough granularity to be assigned to
a specific operationalization.

It must be pointed out that one of the main
advantages exhibited by this approach is that it
introduces mechanisms for reasoning about the
specification. It facilitates the process of evaluating
designs or alternative specifications of the system-
to-be (Teruel et al., 2011)(Chung et al., 2000). In
this work, three different GO proposals are used to
model the requirements of a collaborative system:
Google Docs. This system will allow us to evaluate
which proposal is the most useful to describe the
requirements of the so called workspace awareness.

3 GOAL ORIENTED
PROPOSALS: AN ANALITICAL
BACKGROUND

This section presents briefly the GO proposals, NFR,
i* and KAOS, analyzed to determine which one is
the most appropriate for specifying collaborative
systems. They are used in section 5 to describe the
running example in order to perform the evaluation.

3.1 NFR Framework

This GO proposal was proposed by (Cysneiros and
Yu, 2003) and aims at dealing with Non-Functional
Requirements (NFRs), also known as Quality
Requirements. Unlike Functional Requirements,
NFRs specify constraints for the system, as well as
particular notions of quality factors a system should
meet, such as, accuracy, usability, safety,
performance, reliability or security. Hence, it can be
stated that while functional requirements describe
“what” the system will do, NFRs constraint “how”
the system will accomplish the “what”. As a
consequence, NFRs are always linked to a
Functional Requirement.

To elicit NFRs, the authors propose the use of a
strategy anchored in Language Extended Lexicon
(LEL) (Sampaio and Franco, 1993). LEL is based on
a controlled vocabulary system made up of symbols
being each one of them an entry expressed in terms
of notions and behavioural responses. A notion
records the meaning of a symbol and its fundamental
relationships to other entries. A behavioural
response specifies the connotation of a symbol in the
universe of discourse. Each symbol may also be
represented by one or more aliases and will be
classified as a subject, a verb or an object. Once the
Lexicon is finished, it is enriched with NFRs by

using a knowledge base, presented as catalogues, to
guide the analyst to select the likely needed NFRs
and their related operationalizations.

According to the NFR Framework, NFRs goals
can conflict among them and must be represented as
softgoals to be satisfied. Each softgoal is
decomposed into sub-goals represented by a graph
structure inspired by the And/Or trees used in
problem solving. This decomposition is done by
using contribution links. Contribution links can be
categorized as either or contributions or and
contributions. Contribution links allow one to
decompose NFRs to the point that one can state that
the operationalizations of the related NFR have been
met. Operationalizations are decisions about the
system to meet NFRs. The elements of the NFR GO
model can be seen in Figure 1.

Figure 1: Elements of the NFR Framework model.

3.2 The i* Framework

The i* Framework (Castro, Kolp and Mylopoulos,
2001) consists in an approach for dealing with
requirements in various phases of the software
development process (Early and Late Requirements
Analysis, Architectural and Detailed Design).

Figure 2: Elements of the i* Framework model.

During early requirements analysis, the
requirements engineer gathers and analyzes the
intentions of stakeholders. These are modelled as

A COMPARATIVE OF GOAL-ORIENTED APPROACHES TO MODELLING REQUIREMENTS FOR
COLLABORATIVE SYSTEMS

133

goals which, through some form of a goal-oriented
analysis, eventually lead to the functional and non-
functional requirements of the system-to-be. In i*,
early requirements are assumed to involve social
actors who depend on each other for goals to be
achieved, tasks to be performed, and resources to be
furnished. The i* framework includes the strategic
dependency model for describing the network of
relationships among actors, as well as the strategic
rationale model for describing and supporting the
reasoning that each actor goes through concerning
its relationships with other actors. The model
elements can be seen in Figure 2.

Late Requirements Analysis results in a
requirements specification which describes all
functional and non-functional requirements for the
system-to-be. In Tropos (Mylopoulos, Castro and
Kolp, 2000), a framework for requirements-driven
software development, the information system is
represented as one or more actors who participate in
a strategic dependency model, along with other
actors from the system’s operational environment. In
other words, the system comes into the picture as
one or more actors who contribute to the fulfilment
of stakeholder’s goals.

During architectural design we have to select
among alternative architectural styles by using as
criteria the desired qualities identified earlier in the
process. The analysis involves refining these
qualities, represented as softgoals, to sub-goals that
are more specific and more precise and then
evaluating alternative architectural styles against
them.

The detailed design phase is intended to
introduce additional details for each architectural
component of a system. To support this phase, the
authors propose to adopt existing agent
communication languages and message
transportation mechanisms among other concepts
and tools.

3.3 KAOS Methodology

The KAOS modelling language is part of the KAOS
framework (van Lamsweerde, 2001) for eliciting,
specifying, and analysing goals, requirements,
scenarios, and responsibility assignments. A KAOS
model entails six complementary views or sub-
models (goal, obstacle, object, agent, operation and
behaviour model) all of them related via traceability
links (Pohl, 2010).

Figure 3 depicts the basic constructors for
documenting agents responsibilities for goals
provided by the KAOS framework. KAOS has the
following elements:

 Goal: A goal describes a set of admissible
system behaviors. Goals should be defined in a
clear-cut manner so that one can verify
whether the system satisfies a goal or not.

 Softgoal: In KAOS, softgoals are used to
document preferences among alternative
system behaviors. In a similar way to i*, there
is no clear-cut criterion for verifying the
satisfaction of a softgoal. Softgoals are hence
expected to be satisfied within acceptable
limits.

 Agent: While i* focuses primarily on agents
within organizational structures, the agents
defined in KAOS primarily relate to users and
components of software-intensive systems.
Therefore, an agent is defined as an active
system component which has a specific role
for satisfying a goal. An agent can be a human
agent, a device or a software component.

Figure 3: Basic constructs of the KAOS framework for
modelling goals and assigning agents responsibilities for
goals to.

Dependencies between goals are represented in
the KAOS goal model by using AND/OR-
decompositions and conflict links. In KAOS, goals
can be assigned to agents by means of responsibility
assignment links. We briefly explain these goal
dependencies:

 AND/OR-decomposition: An AND-OR
decomposition link relates a goal to a set of
sub-goals, documenting that the goal is
satisfied if all, or at least one sub-goal, is
satisfied.

 Potential conflict: This link documents that
satisfying one goal may prevent the
satisfaction of other goal under certain
conditions.

 Responsibility assignment: This link between a

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

134

goal and an agent means that this agent is
responsible for satisfying the goal.

4 RUNNING EXAMPLE

As running example to assess how these GO
approaches perform for collaborative system,
Google Docs (Google, 2011) (see Figure 4) has been
used from now on in this paper. Google Docs is a
free, Web-based word processor, spreadsheet,
presentation and form editor whose data storage
service is provided by Google. Google Docs serves
as a collaborative tool for editing documents so that
they can be shared, opened, and edited by multiple
users at the same time. This system was selected for
our analysis because it is widely-known and it
features a clear collaborative focus as its main goal.

Figure 4: Google Docs interface

As a starting point for our evaluation of the
requirements techniques, we identified those design
solutions for awareness requirements in Google
Docs from the set of techniques proposed by Gutwin
(Gutwin, Greenberg and Roseman, 1996). These
techniques, which are commented in the following
subsections, can be found also as patterns for user
collaboration in (Schümmer and Lukosch, 2007).

4.1 Remote Cursors

This technique, based in Gutwin’s telepointers
(Gutwin, Greenberg and Roseman, 1996), allows us
to be aware of the other user’s cursor position and
whether they have selected a text fragment or not
(see Figure 5). Thus, when a remote user is writing
other users can notice it in real-time. Close to the
cursor the user’s nickname appears overlapped with
the text. In addition, if the user selects some text, it

is highlighted by marking it with the user's colour.

Figure 5: Remote cursor and remotely selected text
fragment.

4.2 Participant List & Chat

Google Docs does not implement Gutwin’s avatar
(Gutwin, Greenberg and Roseman, 1996) technique
itself. Instead it shows a list of participants that are
editing simultaneously the same document (see
Figure 6). By using this list, users can communicate
with each other by using a chat, which can be shown
or hidden at any time. In addition, by using this chat
view, users can notice the colour assigned to each
one of their collaborators.

Figure 6: Two users chatting through the participant list.

4.3 Revision History

The techniques identified by Gutwin expressing
information about authorship / about the past
(Gutwin, Greenberg and Roseman, 1996) are used to
make available to the users the history of changes
carried out. They have been implemented by Google
Docs by using a revision history. It allows the
system to keep track of all the changes made by the
users to the different types of documents being
edited (see Figure 7). This revision history provides
a mean for users to review the changes made to the
documents. In this revision history the changes made
by each user are denoted by using different colours.
In addition, if the change made is a deletion, then the
text will be also in strikethrough style. This
functionality can be activated or deactivated at
anytime. This revision history has two levels of
detail, depending on the amount of shown

A COMPARATIVE OF GOAL-ORIENTED APPROACHES TO MODELLING REQUIREMENTS FOR
COLLABORATIVE SYSTEMS

135

information. The user may switch between these two
levels of detail at anytime.

Figure 7: Revision story showing text elimination.

5 EMPIRICAL EVALUATION

To evaluate the different GO approaches mentioned
in section 3, each one of the above mentioned
awareness features is modelled in the following by
using the different techniques. First, we have to
distinguish what Google Docs characteristics can be
modelled by using functional or non-functional
requirements. The telepointer and avatar techniques
result in NFRs because they contribute to increase
some operability, such as ease of use and
helpfulness. Nevertheless, the third characteristic
(Expressing information about authorship / about
the past), despite contributing positively to the
above mentioned quality features, it should be
considered functional, due to the historical
information storage and the rollback function. In
addition, we have also associated the awareness
functionalities both with the three characteristics of
the collaborative systems (collaboration,
communication and coordination) and, with the
characteristics of the ISO/IEC 25010 (Software
engineering - Software product Quality
Requirements and Evaluation (SQuaRE) Quality
model, 2008). This standard has been used to
organize properly the specification of the system
following the recommendations of Moreira et al.
(Moreira, Araújo and Rashid, 2005). Next, the
evaluation is presented following the chronological
order it was carried out. First, in section 5.1 it is
described how the case study was modelled by
applying the three approaches. Second, in section
5.2, the results of the evaluation are presented.

5.1 Modelling the Running Example

After analyzing the characteristics of Google docs
described in section 4, and according to Gutwin's
framework for collaborative systems, we have
specified the systems’ FRs (Table 2 illustrates a

partial description of the system). Next, as can be
observed in Table 3, each awareness functionality
feature detected in the system has been related to
some quality factors in the SQuaRE standard, in
order to identify the NFRs of Google Docs. For the
sake of clarity, and understanding of the evaluation,
only some requirements of Google Docs are
described.

Table 2: Relation between awareness elements and FRs.

Category Element Functional
Requirement

Who Presence Know who is
participating

What
Where

Action
Location

See other user’s
actions

Who
When

Authorship
Event history

Keep the changes’
authorship

Table 3: Relation between quality factors and awareness
functionalities.

Quality Factor Awareness Functionality
Functional Suitability Revision History

Telepointers
Participant List

Reliability Revision History
Performance Efficiency Telepointers
Operability Telepointers

Participant List
Security Revision History

5.1.1 The NFR Framework

In this approach, the SQuaRE quality factors have
been modelled by using softgoals. Nevertheless, the
SQuaRE standard was used instead of the NFR
collections proposed by (Cysneiros and Yu, 2003)
definition to create the NFR hierarchy. Thus, it can
be observed the impact that the quality sub-
characteristic has on main characteristic by means of
contribution links. In the same way, each
characteristic contributes to achieve the software
product quality (see Figure 8).

The problem here is that we are not able to
represent the Functional Requirements (because this
model aims only at non-functional ones), therefore
the three general tasks of collaborative systems
(collaboration, communication and coordination)
cannot be defined. This lack of expressiveness led us
to have an incomplete representation of system's
requirements, so that we have to use additional
models or extend this framework.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

136

Figure 8: NFR Goal-Oriented model.

5.1.2 The i* Framework

In order to carry out the specification of Google
Docs, the i* notation was used. Using this notation,
we specified each one of the SQuaRE quality factors
previously identified in Table 3, as root softgoals of
the system as shown in Figure 9. These softgoals
were refined into other softgoals by selecting those
SQuaRE quality factors more appropriate for the
system. Each one of the awareness functionalities
were specified as resources provided by the system
that contribute positively to satisfy some of the
softgoals, that is, some quality factors. However, it
can be noticed that also some of them contribute

negatively because the constraints they impose. This
is the case of remote cursors, because they increase
the resource utilization. Moreover, the ease of use
depends, among other factors, on the user’s
experience with this kind of systems. In addition, the
three FR identified in Table 3 have been specified as
goals of the system that have dependency
relationships with the resources. It has been also
specified how the awareness techniques contribute
positively to the functional aspects of collaborative
systems specified as tasks in the goal model.

Figure 9: i* Strategic Rationale Model.

Quality
Criteria

Quality
Factor

Operationalization

Quality
Criteria

Quality
Factor

Goals, Tasks
and resources

A COMPARATIVE OF GOAL-ORIENTED APPROACHES TO MODELLING REQUIREMENTS FOR
COLLABORATIVE SYSTEMS

137

Figure 10: KAOS Goal and Responsibility Model.

5.1.3 KAOS Methodology

To model the system using this methodology, and
unlike i*, the model was decomposed in three sub-
models as can be seen in Figure 10. Hence, the
individual models represent (a) awareness goals, (b)
collaborative systems goals and (c) software quality
goals.

These diagrams (Figure 10) show three main
goals and its decomposition in its sub-goals. The
implemented awareness techniques have been
represented here by using agents, because this
element is used to represent responsibility
assignment when using KAOS.

In addition, Figure 10c illustrates a potential
conflict between two softgoals related to two quality

sub-factors: avoid resource utilisation and achieve
attractiveness. Usually, a very attractive user
interface will cause a higher resource utilisation.
This conflict is denoted in the graph by using a red
ray.

5.2 Evaluating GO Approaches

Using as input the different specifications of the
system, the evaluation of the different RE techniques
was carried out by using DESMET (Kitchenham,
1993). It is a set of techniques applicable to evaluate
both Software Engineering methods and tools. We
have used the method based on a qualitative case
study that describes a feature-based evaluation.
Following the guidelines of this technique, an initial

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

138

Table 4: List of Features for approaches evaluation.

Feature Description
FR and NFR
Representation

The model should be able to
represent graphically FR and NFRs
and differentiate them

Collaborative
Systems
Characteristics

The model has to represent the
collaboration, communication and
coordination characteristics

Awareness
Representation

The model should allow one to
represent the awareness
characteristics of the system

Quality
Factors
Representation

The model must represent the
SQuaRE characteristics and sub-
characteristics

Importance of
Requirements

The model should represent the
importance and preference between
requirements

Hierarchical
Representation

The relation between the model
elements should be hierarchical

Model
Complexity

The model complexity should not be
too high

Quantitative
Model

The model must allow one to
quantify the relations between
represented elements

Traceability The represented requirements should
be traceable throughout the software
development process

list of features was prepared that a GO approach for
collaborative systems should provide (see Table 4).
As can be observed, some of those features are
directly related to the specification of NFRs.

Once Table 4 is filled in, DESMET establishes
that an importance degree should be assigned to
each identified feature. Specifically, the degrees to
apply are:

 M: Mandatory
 HD: Highly Desirable
 D: Desirable
 N: Nice to have
By using these degrees, Table 5 was filled in. As

can be noticed, the most important features to be
supported are both the NFR representation and the
traceability required by collaborative systems.

Table 5: Importance of the features.

Feature Importance
FR and NFR Representation M
Collaborative Systems Characteristics M
Awareness Representation M
Quality Factors Representation HD
Importance of Requirements HD
Traceability HD
Quantitative Model D
Hierarchical Representation D
Model Complexity N

Next, according to DESMET, a scale to evaluate
each one of the described features should be
provided. The scale proposed by DESMET (see
Table 6) was applied to evaluate each feature
according to the following factors:

 CAT: Conformance Acceptability Threshold.
 CSO: Conformance score obtained for

candidate method.

Once each feature was evaluated, the difference

between CAT and CSO factors was computed as
shown in the column Difference (Dif) in Tables 7, 8
and 9.

Table 6: Judgement scale to assess support for a feature.

Generic scale
point

Definition of Scale point Scale
Point

Mapping
Makes things
worse

Cause Confusion. The way the feature is represented makes difficult its modelling
and/or encourage its incorrect use

-1

No support Fails to recognise it. The approach are not able to model a certain feature 0
Little support The feature is supported indirectly, for example by the use of other model/approach in a

non-standard combination
1

Some
support

The feature is explicitly in the feature list of the model. However, some aspects of
feature use are not catered for.

2

Strong
support

The feature is explicitly in the feature list of the model. All aspects of the feature are
covered but its use depends on the expertise of the user

3

Very strong
support

The feature is explicitly in the feature list of the model. All aspects of the feature are
covered and the approach provides a guide to assist the user

4

Full support The feature appears explicitly in the feature list of the model. All its aspects are covered
and the approach provides a methodology to assist the user

5

A COMPARATIVE OF GOAL-ORIENTED APPROACHES TO MODELLING REQUIREMENTS FOR
COLLABORATIVE SYSTEMS

139

Table 7: Evaluation for the NFR Framework.

Feature Imp CAT CSO Dif Sco

FR and NFR
Representation

4 5 3 -2 -8

Collaborative
Systems
Characteristics

4 4 1 -3 -12

Awareness
Representation

4 4 4 0 0

Quality Factors
Representation

3 3 5 2 6

Importance of
Requirements

3 3 0 -3 -9

Traceability 3 3 3 0 0
Quantitative Model 2 2 1 -1 -2
Hierarchical
Representation

2 2 3 1 2

Model Complexity 1 1 3 2 2
Total -21

Table 8: Evaluation for the i* Framework.

Feature Imp CAT CSO Dif Sco

FR and NFR
Representation

4 5 5 0 0

Collaborative
Systems
Characteristics

4 4 5 1 4

Awareness
Representation

4 4 5 1 4

Quality Factors
Representation

3 3 5 2 6

Importance of
Requirements

3 3 0 -3 -9

Traceability 3 3 3 0 0
Quantitative Model 2 2 1 -1 -2
Hierarchical
Representation

2 2 3 1 2

Model Complexity 1 1 1 0 0
Total 5

Next, we should highlight that a variation of the
DESMET method was used. The importance (Imp)
of each feature has been weighted in a scale from 1
to 4 (Nice to have – 1, Desirable – 2, Highly
Desirable – 3, Mandatory – 4). The importance was
used to compute the final score of each feature by
multiplying the Importance by the Difference. This
computation is shown in the column Score (Sco) in
Tables 7, 8 and 9. Lastly, the final score of each
technique (Total) was obtained by adding the scores
of all the features. This framework has been used to
evaluate all the different GO approaches studied.
Figure 11 shows graphically the scores obtained

Table 9: Evaluation for KAOS Methodology.

Feature Imp CAT CSO Dif Sco

FR and NFR
Representation

4 5 5 0 0

Collaborative
Systems
Characteristics

4 4 4 0 0

Awareness
Representation

4 4 4 0 0

Quality Factors
Representation

3 3 4 1 3

Importance of
Requirements

3 3 0 -3 -9

Traceability 3 3 4 1 3
Quantitative Model 2 2 0 -2 -4
Hierarchical
Representation

2 2 4 2 4

Model Complexity 1 1 2 1 1
Total -2

Figure 11: Empirical analysis results.

by each one of the GO approaches. As can be
observed, the i* approach is the only one that has a
positive score. Despite this positive score, it has
been negatively evaluated for the Quantitative
Model feature, since i* only provides a partial
support for quantifying the relations among
requirements when using contribution links. The i*
approach also fails in representing the requirements
importance, giving no support to determine which
requirements are more important than others.
Nevertheless, the other two GO approaches also
share this lack of representation of the importance of
each requirement. KAOS also fails in the same
features than i* but, unlike this approach, KAOS
obtains a lower (or the same) score in almost all
features except for the Hierarchical Representation
feature, thanks to its tree-based representation.
Finally, the NFR framework is the less suitable
approach, obtaining a very low score, because of
both the lack of expressiveness to specify FRs and
its lack of adaptability to represent Collaborative
Systems Characteristics.

‐25

‐20

‐15

‐10

‐5

0

5

10
NFR i* KAOS

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

140

Figure 12: Results relative to distinct features.

In addition, as DESMET suggests, we have
performed a comparative of the percentage of each
feature satisfied by each analyzed GO approach.
Figure 12 illustrates that the NFR approach only
exceeds its competitors in the Model Complexity
feature, due to the simplicity their models have.
Similarly, KAOS supersedes i* in this feature
because i* has more modelling elements for the sake
of expressiveness. In addition, the evaluation of
Hierarchical Representation and Traceability
features for KAOS is better than for i* because i*
models are usually defined following a network
structure and do not provide a sophisticated support
for traceability. Other meaningful fact is that no
approach is able to represent the importance of the
requirements, something that should be considered
in future works. Another significant result is that,
despite i* and KAOS have the same score for the
feature FR and NFR Representation, i* supersedes
KAOS in the most important features (mandatory
and high desirable ones) except for the Traceability
feature. Nevertheless, KAOS obtains a better score
in the less valuated features, like Hierarchical
Representation and Model Complexity.

6 CONCLUSIONS AND FURTHER
WORK

Collaborative systems are highly demanding in
terms of NFRs. Therefore, the selection of a RE
technique with proper support for their successful
specification is a must. In this sense, the exploitation
of the GO approach emerges as the most appropriate
proposal(Teruel et al., 2011). However, up-to-date

several RE techniques have been proposed that
follow this approach. In order to select the most
suitable one, in this paper the results of an empirical
experiment of several GO techniques considering
the special needs of CSCW systems have been
conducted.

After this empirical experiment, we can conclude
that the analyzed GO approaches are not fully
appropriate to model collaborative system
characteristics and its relationships with awareness
and quality requirements. Among the analyzed GO
techniques, the i* approach is the only one that has a
positive score for the analyzed features related to
CSCW systems. In addition, i* is the only one that
provides (partial) support for quantifying the
relations among requirements when using
contribution links. However, this technique also
exhibits some shortcomings, such as the lack of a
hierarchical representation or support for specifying
the importance of the requirements. But perhaps, the
most significant shortcoming is that the
comprehensibility of the awareness requirements is
not appropriate. For instance, i* does not provide
support to specify when a task is carried out by
several roles, what is very common in a CSCW
system.

These conclusions, along with the results shown
in (Teruel et al., 2011), support our initial
hypothesis: current Requirement Engineering
techniques should be enriched to address the issues
identified during this study regarding CSCW
systems. As was shown in this study, i* is the most
promising technique to be used as the foundation for
this improvement. This constitutes one of our future
and challenging works: to adapt/extend i*for this

0%

50%

100%

150%

200%

250%

300%

350%

FR and NFR
Representation

Collaborative
Systems

Characteristics

Awareness
Representation

Quality Factors
Representation

Importance of
Requirements

Traceability Quantitative
Model

Hierarchical
Representation

Model
Complexity

NFR

i*

KAOS

A COMPARATIVE OF GOAL-ORIENTED APPROACHES TO MODELLING REQUIREMENTS FOR
COLLABORATIVE SYSTEMS

141

kind of systems. In addition to this definition, its
validation by means of more complex case studies is
planned in the near future.

In addition, another future work is the definition
of techniques that support that the defined models
can be used for validation purposes. That is, its
conformance with the SQuaRE Quality in Use
factors (usability, flexibility and safety) should be
evaluable in an easy and intuitive way, once the
system is fully developed.

ACKNOWLEDGEMENTS

This work has been partially supported by a grant
(DESACO, PEII09-0054-9581) from the Junta de
Comunidades de Castilla-La Mancha and also by a
grant (TIN2008-06596-C02-01) from the Spanish
Government.

REFERENCES

Castro, J., Kolp, M. and Mylopoulos, J. (2001) 'A
requirements-driven development methodology', 108-
123.

Chung, L., Nixon, B., Yu, E. and Mylopoulos, J. (2000)
Non-Functional Requirements in Software
Engineering, Kluwer Academic Publishing.

Cockburn, A. (2000) Writting Effective Use Cases,
Addison-Wesley.

Cysneiros, L. M. and Yu, E. (2003) 'Non-Functional
Requirements Elicitation', in Sampaio do Prado Leite,
J. C. and Doorn, J.H. (ed.) Perspectives on Software
Requirements, Springer.

Cysneiros, L. M. and Yu, E. (2003) Non-Functional
Requirements Elicitation (Perspectives on Software
Requirements), Springer.

Google (2011) Google Docs.
Gutwin, C. and Greenberg, S. (2002) 'A Descriptive

Framework of Workspace Awareness for Real-Time
Groupware', Computer Supported Cooperative Work,
vol. 11, pp. 411-446.

Gutwin, C., Greenberg, S. and Roseman, M. (1996)
'Workspace Awareness in Real-Time Distributed
Groupware: Framework, Widgets, and Evaluation',
281-298.

Hochmuller, H. (1999) 'Towards the Proper Integration of
Extra-Functional Requirements', Australasian Journal
of Information Systems, vol. 6, no. 2.

Kavakli, E. and Loucopoulos, P. (2004) 'Goal Modeling in
Requirements Engineering: Analysis and Critique of
Current Methods', 102-124.

Kitchenham, B. (1993) 'DESMET: A methodology for
evaluating software engineering methods and tools', in
Rombach, H., Basili, V. and Selby, R. (ed.)
Experimental Software Engineering Issues: Critical

Assessment and Future Directions, Springer Berlin /
Heidelberg.

Moreira, A. M. D., Araújo, J. and Rashid, A. (2005) 'A
Concern-Oriented Requirements Engineering Model',
293-308.

Mylopoulos, J., Castro, J. and Kolp, M. (2000) 'Tropos: A
Framework for Requirements-Driven Software
Development', 261-273.

Pohl, K. (2010) Requirements Engeneering:
Fundamentals, Principles, and Techniques, Springer.

Sampaio, J.C. and Franco, A.P.M. (1993) 'A Strategy for
Conceptual Model Acquisition', 243-246.

Schümmer, T. and Lukosch, S. (2007) Patterns for
Computer-Mediated Interaction, John Wiley \& Sons
Ltd.

Software engineering - Software product Quality
Requirements and Evaluation (SQuaRE) Quality
model (2008).

Teruel, M. A., Navarro, E., López-Jaquero, V., Montero,
F. and González, P. (2011) 'An Empirical Evaluation
of Requirement Engineering Techniques for
Collaborative Systems', 15th Empirical Assesment of
Software Engineering, Durham, UK.

van Lamsweerde, A. (2001) 'Goal-Oriented Requirements
Engineering: A Guided Tour', Proceedings 5th IEEE
International Symposium on RE, Toronto, 249-263.

ENASE 2011 - 6th International Conference on Evaluation of Novel Software Approaches to Software Engineering

142

